Combined control with sliding mode and partial feedback linearization for 3D overhead cranes
A 3D overhead crane is an underactuated system consisting of five outputs: trolley position, bridge translation, cable length, and two cargo swings. These outputs are controlled by three actuators for cargo hoisting, trolley motion, and bridge traveling. This study proposes the use of a nonlinear controller that performs five tasks concurrently: cargo hoisting, trolley tracking, bridge motion, payload vibration suppression during transport, and cargo swing elimination at the destination. The proposed algorithm is combined with two control components: (i) partial feedback linearization, which is a precursor to controller design, to suppress cargo vibration; and (ii) sliding mode method, which provides robust control in lifting the payload and driving trolley and bridge motions against model imprecision and uncertainty. These two control mechanisms are successfully merged into a combined controller because the kinematic relationships between the state variables are made apparent in the system dynamics. Simulation and experimental results show that the proposed controller asymptotically stabilizes all system responses.Copyright © 2013 John Wiley & Sons, Ltd.