This paper addresses the problem of reachable set bounding for linear discrete-time systems that are subject to state delay and bounded disturbances. Based on the Lyapunov method, a sufficient condition for the existence of ellipsoid-based bounds of reachable sets of a linear uncertain discrete system is derived in terms of matrix inequalities. Here, a new idea is to minimize the projection distances of the ellipsoids on each axis with different exponential convergence rates, instead of minimization of their radius with a single exponential rate.